
Turning MQTT v5 inside out
Maurice Kalinowski
Principal Software Engineer, The Qt Company GmbH

Meeting Embedded 2018

About the Speaker
›Maurice Kalinowski

› The Qt Company
› Maintainer for Qt MQTT
› …

13 November 2018 © The Qt Company3

Publish and Subscribe

ServerServer

Client 1Client 1 Client 2Client 2 Client 3Client 3 Client 4Client 4 Client 5Client 5

clientx.connectToHost(…)

Client3.subscribe(“Topics/t1”)

Client4.subscribe(“Topics/t2”)

Client5.subscribe(“Topics/#”)

Client1.publish(“Topics/t1”, “someData”)

onMessageReceived(…) {…}

› Open Standard
› Freedom of choice

› Many implementations exist

› Different programming languages

› Different licenses

› …

› Interoperability
› Integration options to cloud solutions:

› Amazon

› Azure

› …

› Integration options to other M2M protocols

› OpcUA decided for MQTT for Pub/Sub in the standard

13 November 2018 © The Qt Company4

Why MQTT?

› MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open, simple,
and designed to be easy to implement. These characteristics make it ideal for use in many situations,
including constrained environments such as for communication in Machine to Machine (M2M) and
Internet of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at
a premium. The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless,
bidirectional connections. Its features include:

› Use of the publish/subscribe message pattern which provides one-to-many message distribution and decoupling of applications.
› A messaging transport that is agnostic to the content of the payload.
› Three qualities of service for message delivery

› At most once
› At least once
› Exactly once

› A small transport overhead and protocol exchanges minimized to reduce network traffic.
› A mechanism to notify interested parties when an abnormal disconnection occurs

13 November 2018 © The Qt Company5

Why MQTT?

› Open Standard by OASIS
› As an M2M/Internet of Things (IoT) connectivity protocol, MQTT is designed to support messaging transport from remote

locations/devices involving small code footprints (e.g., 8-bit, 256KB ram controllers), low power, low bandwidth, high-cost
connections, high latency, variable availability, and negotiated delivery guarantees.

› Quoting MQTT.org
› It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote

locations where a small code footprint is required and/or network bandwidth is at a premium.

13 November 2018 © The Qt Company6

Why MQTT?

Lightweight?

13 November 2018 © The Qt Company7

› Minimal overhead per command
› Some commands merge options into command statement

› Length types are “Variable byte Integers” with byte size 1-4

13 November 2018 © The Qt Company8

Packet Layout
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Connect Length “MQTT” Version Flags Keep Alive Payload … e.g. username

Subscribe Length ID Topic Length “a/b” QoS

Publish Length Topic Length “a/b” Packet ID Payload / Message Content

7

Publish
Statement

6

5

4

3 DUP

2 QoS

1 Level

0 Retain

Only QoS 1/2

13 November 2018 © The Qt Company9

Available commands
Command Value Description Direction

CONNECT 0x10 Request Connection C->S

CONNACK 0x20 Connection request accepted S->C

PUBLISH 0x30 Send/Receive message C->S

PUBACK 0x40 Message has been received and
handled by server (QoS1) S->C

PUBREC 0x50 Message has been received (QoS2) S->C

PUBREL 0x60 Message can be released (QoS2) C->S

PUBCOMP 0x70 Message handling completed (QoS2) S->C

SUBSCRIBE 0x80 Subscribe to one or more topics C->S

SUBACK 0x90 Subscription request has been
accepted S->C

UNSUBSCRIBE 0xA0 Remove subscription C->S

UNSUBACK 0xB0 Subscription removal done S->C

PINGREQ 0xC0 Ping C->S

PINGRESP 0xD0 Pong S->C

DISCONNECT 0xE0 Request Clean Disconnect C->S

MQTT v5
›Protocol level 5

13 November 2018 © The Qt Company10

13 November 2018 © The Qt Company11

MQTT protocol level 5.0

Session Expiry

Message Expiry

Reason Codes

Reason Strings
Server disconnect

Payload format and content type

Request / Response

Shared Subscriptions

Subscription IDs

Topic Alias

Flow Control

(User) Properties

Maximum Packet Size

Server feature / capability management

Enhanced Authentication

Subscription Options

Will delay

Server Keep Alive
Assigned Client ID

Server reference

13 November 2018 © The Qt Company12

MQTT protocol level 5.0

Session Expiry

Message Expiry

Reason Codes

Reason Strings
Server disconnect

Payload format and content type

Request / Response

Shared Subscriptions

Subscription IDs

Topic Alias

Flow Control

(User) Properties

Maximum Packet Size

Server feature / capability management

Enhanced Authentication

Subscription Options

Will delay

Server Keep Alive
Assigned Client ID

Server reference

› Configurability, Flexibility, Control
› Minimal cost (in message size)

13 November 2018 © The Qt Company13

MQTTv5: Properties everywhere
CONNECT SUBSCRIBE PUBLISH

Session Expiry Subscription ID Payload Format

Receive Maximum User Properties Message Expiry

Maximum Packet Size Topic Alias

Topic Alias Maximum Response Topic

Request Response Information Correlation Data

Request Problem Information User Properties

User Properties Subscription ID

Auth. Method Content Type

Auth. Data

13 November 2018 © The Qt Company14

Packet Layout (MQTTv5)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Connect Length “MQTT” Version Flags Keep Alive PropSize Properties Payload

Subscribe Length ID Topic Length “a/b” QoS PropSize Properties

Publish Length Topic Length “a/b” Packet ID PropSize Properties Payload

› Properties are added at the end of the variable header
› Property Size is variable byte integer (size 1-4)
› Properties are designed as a set (type id, value)

› Example: 0x27 (Max Packet Size) 65535 (as 4 byte integer)

› Minimum additional overhead is 1 byte
› Indicating no properties set

› Connectivity Limitations
› Session Expiry

› Message Expiry

› Will Delay

› Hardware Limitations
› Maximum Packet Size

› Bandwidth Limitations
› Topic Alias

13 November 2018 © The Qt Company15

MQTTv5: Features for embedded

› Example: Sensor Network
› Topic: sensors/Europe/2af89b42-d2a6-11e8-a8d5-f2801f1b9fd1/Temperature

› Topic must be part of every message publication
› Topic 63 bytes plus size description 1 byte => 64 bytes

13 November 2018 © The Qt Company16

MQTTv5: Topic Alias

PUBLISH (1)

Msg Length (1): 69

Topic Size (1): 63

Topic (63): sensors/Europe/2af89b…

Properties (1): 0

Payload (4): "28.4"

PUBLISH (1)

Msg Length (1): 72

Topic Size (1): 63

Topic (63): sensors/Europe/2af89b…

Properties (1): 2

Prop Type(1): 0x23

Prop Value(2): 1

Payload (4): "28.4"

PUBLISH (1)

Msg Length (1): 9

Topic Size (1): 0

Properties (1): 2

Prop Type(1): 0x23

Prop Value(2): 1

Payload (4): "26.2"
71 bytes per msg

74 bytes (first)

11 bytes (following)

› MQTT 3.1.1 relied on
› TLS on transport level

› Username / password authentication on connect

› Caused server providers to create custom solutions
› Users wanted more flexibility

› Specify authentication methods (preferably pluggable)

› More fine-grained authorization (e.g. Topic access)

13 November 2018 © The Qt Company17

MQTTv5: Authentication / Authorization

13 November 2018 © The Qt Company18

Available commands
Command Value Description Direction

CONNECT 0x10 Request Connection C->S

CONNACK 0x20 Connection request accepted S->C

PUBLISH 0x30 Send/Receive message C->S

PUBACK 0x40 Message has been received and
handled by server (QoS1) S->C

PUBREC 0x50 Message has been received (QoS2) S->C

PUBREL 0x60 Message can be released (QoS2) C->S

PUBCOMP 0x70 Message handling completed (QoS2) S->C

SUBSCRIBE 0x80 Subscribe to one or more topics C->S

SUBACK 0x90 Subscription request has been
accepted S->C

UNSUBSCRIBE 0xA0 Remove subscription C->S

UNSUBACK 0xB0 Subscription removal done S->C

PINGREQ 0xC0 Ping C->S

PINGRESP 0xD0 Pong S->C

DISCONNECT 0xE0 Request Clean Disconnect C->S

13 November 2018 © The Qt Company19

Available commands (MQTTv5)
Command Value Description Direction

CONNECT 0x10 Request Connection C->S

CONNACK 0x20 Connection request accepted S->C

PUBLISH 0x30 Send/Receive message C->S

PUBACK 0x40 Message has been received and
handled by server (QoS1) S->C

PUBREC 0x50 Message has been received (QoS2) S->C

PUBREL 0x60 Message can be released (QoS2) C->S

PUBCOMP 0x70 Message handling completed (QoS2) S->C

SUBSCRIBE 0x80 Subscribe to one or more topics C->S

SUBACK 0x90 Subscription request has been
accepted S->C

UNSUBSCRIBE 0xA0 Remove subscription C->S

UNSUBACK 0xB0 Subscription removal done S->C

PINGREQ 0xC0 Ping C->S

PINGRESP 0xD0 Pong S->C

DISCONNECT 0xE0 Request Clean Disconnect C->S

AUTH 0xF0 Authentication C<->S

› Bidirectional Command
› Contains reason code to indicate auth state

› 0x00: Auth Success

› 0x18: Continue Authentication

› 0x19: Re-authenticate

› Properties
› Authentication Method

› Authentication Data

› Reason String

› User Properties

› Payload

13 November 2018 © The Qt Company20

MQTTv5: Authentication

Client Server

Connect

Auth
(Continue)

Auth
(Continue)

Auth
(Success)

Client

› Reason Code
› Reason String
› Subscription ID

› overlapping subscriptions

13 November 2018 © The Qt Company21

MQTTv5: Error handling / debugging

Subscription A

Topic Sensors/#

QoS 1

ID 1

Subscription B

Topic Sensors/42/temp

QoS 2

ID 2

Server

Message

Topic Sensors/42/temp

Sub ID 1,2

QoS 2

Payload “28.4”

Message

Topic Sensors/42/temp

Sub ID 1,2

QoS 1

Payload “28.4”

› High transport requirements
› Ordered, lossless, bi-directional

› TCP mostly used, if not only, approach

› Server is the bottleneck
› Clusters, Bridges

› Load-balancing

› No RPC
› No 1:1 connection

13 November 2018 © The Qt Company22

Downsides of MQTT (PubSub in general)

Considered for MQTTv6, (potentially use) MQTT-SN

Not designed to do so

› Client
› Qt MQTT

› C++, https://github.com/qt/qtmqtt

› gmqtt

› Python, https://github.com/wialon/gmqtt

› Zotonic mqtt_packet_map

› Erlang,
https://github.com/zotonic/mqtt_packet_map

› Server
› Flespi

› Vernemq

› Eclipse Paho Testing Utilities

13 November 2018 © The Qt Company23

Available solutions (MQTTv5)

› MQTT Servers are in the cloud or on the edge
› For high level embedded (ARM64, …) containers are getting more traction

› Security

› OTA

› …

› Data synchronization / Telemetry between containers
› MQTT

13 November 2018 © The Qt Company24

Food for thought: Servers and Embedded

Thank you
Resources:
• OASIS TC https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
• https://www.mqtt.org
• https://www.youtube.com/watch?v=CJX-x24NVqs Ian Craggs MQTT5

Maurice Kalinowski, Maurice.Kalinowski@qt.io @maukalinow

