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Publish and Subscribe

ServerServer

Client 1Client 1 Client 2Client 2 Client 3Client 3 Client 4Client 4 Client 5Client 5

clientx.connectToHost(…)

Client3.subscribe(“Topics/t1”)

Client4.subscribe(“Topics/t2”)

Client5.subscribe(“Topics/#”)

Client1.publish(“Topics/t1”, “someData”)

onMessageReceived(…) {…}



› Open Standard
› Freedom of choice

› Many implementations exist

› Different programming languages

› Different licenses

› …

› Interoperability
› Integration options to cloud solutions: 

› Amazon

› Azure

› …

› Integration options to other M2M protocols

› OpcUA decided for MQTT for Pub/Sub in the standard
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Why MQTT?



› MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open, simple, 
and designed to be easy to implement. These characteristics make it ideal for use in many situations, 
including constrained environments such as for communication in Machine to Machine (M2M) and 
Internet of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at 
a premium. The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless, 
bidirectional connections. Its features include: 

› Use of the publish/subscribe message pattern which provides one-to-many message distribution and decoupling of applications. 
› A messaging transport that is agnostic to the content of the payload.  
› Three qualities of service for message delivery

› At most once
› At least once
› Exactly once 

› A small transport overhead and protocol exchanges minimized to reduce network traffic. 
› A mechanism to notify interested parties when an abnormal disconnection occurs
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Why MQTT?



› Open Standard by OASIS
› As an M2M/Internet of Things (IoT) connectivity protocol, MQTT is designed to support messaging transport from remote 

locations/devices involving small code footprints (e.g., 8-bit, 256KB ram controllers), low power, low bandwidth, high-cost 
connections, high latency, variable availability, and negotiated delivery guarantees.

› Quoting MQTT.org
› It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote 

locations where a small code footprint is required and/or network bandwidth is at a premium.
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Why MQTT?



Lightweight?
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› Minimal overhead per command
› Some commands merge options into command statement

› Length types are “Variable byte Integers” with byte size 1-4
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Packet Layout
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Connect Length “MQTT” Version Flags Keep Alive Payload … e.g. username

Subscribe Length ID Topic Length “a/b” QoS

Publish Length Topic Length “a/b” Packet ID Payload / Message Content

7

Publish
Statement

6

5

4

3 DUP

2 QoS

1 Level

0 Retain

Only QoS 1/2
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Available commands
Command Value Description Direction

CONNECT 0x10 Request Connection C->S

CONNACK 0x20 Connection request accepted S->C

PUBLISH 0x30 Send/Receive message C->S

PUBACK 0x40 Message has been received and 
handled by server (QoS1) S->C

PUBREC 0x50 Message has been received (QoS2) S->C

PUBREL 0x60 Message can be released (QoS2) C->S

PUBCOMP 0x70 Message handling completed (QoS2) S->C

SUBSCRIBE 0x80 Subscribe to one or more topics C->S

SUBACK 0x90 Subscription request has been 
accepted S->C

UNSUBSCRIBE 0xA0 Remove subscription C->S

UNSUBACK 0xB0 Subscription removal done S->C

PINGREQ 0xC0 Ping C->S

PINGRESP 0xD0 Pong S->C

DISCONNECT 0xE0 Request Clean Disconnect C->S



MQTT v5
›Protocol level 5
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MQTT protocol level 5.0

Session Expiry

Message Expiry

Reason Codes

Reason Strings
Server disconnect

Payload format and content type

Request / Response

Shared Subscriptions

Subscription IDs

Topic Alias

Flow Control

(User) Properties

Maximum Packet Size

Server feature / capability management

Enhanced Authentication

Subscription Options

Will delay

Server Keep Alive
Assigned Client ID

Server reference
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MQTT protocol level 5.0

Session Expiry

Message Expiry
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Reason Strings
Server disconnect

Payload format and content type

Request / Response

Shared Subscriptions

Subscription IDs

Topic Alias

Flow Control

(User) Properties

Maximum Packet Size

Server feature / capability management

Enhanced Authentication

Subscription Options

Will delay

Server Keep Alive
Assigned Client ID

Server reference



› Configurability, Flexibility, Control
› Minimal cost (in message size)
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MQTTv5: Properties everywhere
CONNECT SUBSCRIBE PUBLISH

Session Expiry Subscription ID Payload Format

Receive Maximum User Properties Message Expiry

Maximum Packet Size Topic Alias

Topic Alias Maximum Response Topic

Request Response Information Correlation Data

Request Problem Information User Properties

User Properties Subscription ID

Auth. Method Content Type

Auth. Data
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Packet Layout (MQTTv5)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Connect Length “MQTT” Version Flags Keep Alive PropSize Properties Payload

Subscribe Length ID Topic Length “a/b” QoS PropSize Properties

Publish Length Topic Length “a/b” Packet ID PropSize Properties Payload

› Properties are added at the end of the variable header
› Property Size is variable byte integer (size 1-4)
› Properties are designed as a set (type id, value)

› Example: 0x27 (Max Packet Size) 65535 (as 4 byte integer)

› Minimum additional overhead is 1 byte
› Indicating no properties set



› Connectivity Limitations
› Session Expiry

› Message Expiry

› Will Delay

› Hardware Limitations
› Maximum Packet Size

› Bandwidth Limitations
› Topic Alias
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MQTTv5: Features for embedded



› Example: Sensor Network
› Topic: sensors/Europe/2af89b42-d2a6-11e8-a8d5-f2801f1b9fd1/Temperature

› Topic must be part of every message publication
› Topic 63 bytes plus size description 1 byte => 64 bytes
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MQTTv5: Topic Alias

PUBLISH (1)

Msg Length (1): 69

Topic Size (1): 63

Topic (63): sensors/Europe/2af89b…

Properties (1): 0

Payload (4): "28.4"

PUBLISH (1)

Msg Length (1): 72

Topic Size (1): 63

Topic (63): sensors/Europe/2af89b…

Properties (1): 2

Prop Type(1): 0x23

Prop Value(2): 1

Payload (4): "28.4"

PUBLISH (1)

Msg Length (1): 9

Topic Size (1): 0

Properties (1): 2

Prop Type(1): 0x23

Prop Value(2): 1

Payload (4): "26.2"
71 bytes per msg

74 bytes (first)

11 bytes (following)



› MQTT 3.1.1 relied on
› TLS on transport level

› Username / password authentication on connect

› Caused server providers to create custom solutions
› Users wanted more flexibility

› Specify authentication methods (preferably pluggable)

› More fine-grained authorization (e.g. Topic access)
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MQTTv5: Authentication / Authorization
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Available commands
Command Value Description Direction

CONNECT 0x10 Request Connection C->S

CONNACK 0x20 Connection request accepted S->C

PUBLISH 0x30 Send/Receive message C->S

PUBACK 0x40 Message has been received and 
handled by server (QoS1) S->C

PUBREC 0x50 Message has been received (QoS2) S->C

PUBREL 0x60 Message can be released (QoS2) C->S

PUBCOMP 0x70 Message handling completed (QoS2) S->C

SUBSCRIBE 0x80 Subscribe to one or more topics C->S

SUBACK 0x90 Subscription request has been 
accepted S->C

UNSUBSCRIBE 0xA0 Remove subscription C->S

UNSUBACK 0xB0 Subscription removal done S->C

PINGREQ 0xC0 Ping C->S

PINGRESP 0xD0 Pong S->C

DISCONNECT 0xE0 Request Clean Disconnect C->S
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Available commands (MQTTv5)
Command Value Description Direction

CONNECT 0x10 Request Connection C->S

CONNACK 0x20 Connection request accepted S->C

PUBLISH 0x30 Send/Receive message C->S

PUBACK 0x40 Message has been received and 
handled by server (QoS1) S->C

PUBREC 0x50 Message has been received (QoS2) S->C

PUBREL 0x60 Message can be released (QoS2) C->S

PUBCOMP 0x70 Message handling completed (QoS2) S->C

SUBSCRIBE 0x80 Subscribe to one or more topics C->S

SUBACK 0x90 Subscription request has been 
accepted S->C

UNSUBSCRIBE 0xA0 Remove subscription C->S

UNSUBACK 0xB0 Subscription removal done S->C

PINGREQ 0xC0 Ping C->S

PINGRESP 0xD0 Pong S->C

DISCONNECT 0xE0 Request Clean Disconnect C->S

AUTH 0xF0 Authentication C<->S



› Bidirectional Command
› Contains reason code to indicate auth state

› 0x00: Auth Success

› 0x18: Continue Authentication

› 0x19: Re-authenticate

› Properties
› Authentication Method

› Authentication Data

› Reason String

› User Properties

› Payload
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MQTTv5: Authentication

Client Server

Connect

Auth
(Continue)

Auth
(Continue)

Auth
(Success)



Client

› Reason Code
› Reason String
› Subscription ID

› overlapping subscriptions
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MQTTv5: Error handling / debugging

Subscription A

Topic Sensors/#

QoS 1

ID 1

Subscription B

Topic Sensors/42/temp

QoS 2

ID 2

Server

Message

Topic Sensors/42/temp

Sub ID 1,2

QoS 2

Payload “28.4”

Message

Topic Sensors/42/temp

Sub ID 1,2

QoS 1

Payload “28.4”



› High transport requirements
› Ordered, lossless, bi-directional

› TCP mostly used, if not only, approach

› Server is the bottleneck
› Clusters, Bridges

› Load-balancing

› No RPC
› No 1:1 connection
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Downsides of MQTT (PubSub in general)

Considered for MQTTv6, (potentially use) MQTT-SN

Not designed to do so



› Client
› Qt MQTT

› C++, https://github.com/qt/qtmqtt

› gmqtt

› Python, https://github.com/wialon/gmqtt

› Zotonic mqtt_packet_map

› Erlang, 
https://github.com/zotonic/mqtt_packet_map

› Server
› Flespi

› Vernemq

› Eclipse Paho Testing Utilities
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Available solutions (MQTTv5)



› MQTT Servers are in the cloud or on the edge
› For high level embedded (ARM64, …) containers are getting more traction

› Security

› OTA

› …

› Data synchronization / Telemetry between containers
› MQTT
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Food for thought: Servers and Embedded



Thank you
Resources:
• OASIS TC https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
• https://www.mqtt.org
• https://www.youtube.com/watch?v=CJX-x24NVqs Ian Craggs MQTT5

Maurice Kalinowski, Maurice.Kalinowski@qt.io @maukalinow




